
Stamp Applications no. 28 (June ’97):

Nifty Networking Chips
Link Stamps Far and Wide

Use an RS-485 transceiver

for reliable network comms

by Scott Edwards

STAMPS ARE GREAT for bridging the gap

between PCs and hardware sensors or controls.

The Stamps easily communicate with the PC

serial port, and just as easily interface with

primitive hardware on its own terms.

The obvious next step is to network Stamps

together so that a single PC can gather data

from Stamps scattered around the house,

garden, building, or factory.

While Stamps offer some built-in networking

capabilities, you’re probably pushing your luck if

you build a network more than a few dozen feet

long. If you want real networking, you want RS-

485.

This month’s column will show how to

interface Stamps to an RS-485 transceiver chip

for easy and robust network communication.

What’s RS-485? You are probably familiar with

RS-232, the electronics industry specification

that describes a garden-variety computer serial

port used to communicate with modems and

other accessories. In RS-232 signaling, a positive

voltage (+5 to +15V) represents a digital 0, and

a negative voltage (–5 to –15V) a 1. Those

voltages are specified relative to a signal

ground, which must be common to both RS-232

devices. I say “both” because RS-232 is meant to

connect only two devices at a time. According to

the specs, maximum cable lengthis 50 feet.

RS-232 calls for separate transmit and receive

lines, so both ends of an RS-232 connection may

send and receive data simultaneously, a

capability called full duplex.

RS-485 is an alternative standard designed to

allow multiple devices (up to 32) to communicate

over a single pair or wires up to 4000 feet long.

RS-485 signals are not referenced to ground per
se, but to the voltage difference between the two

wires of the signaling pair. The two wires of the

pair are designated A and B; when the voltage

on A is greater than the voltage on B, that’s a

digital 1. When B is greater than A, that’s a 0.

This differential signaling is nearly immune to

noise pickup over long wire runs. The only catch

is that the local ground potentials of the RS-485

devices cannot differ by more than ±7 volts. If

they do, the system won’t work.

Since only one pair is used for receive and

transmit, the RS-485 devices have to take turns

using it. This is called half duplex. If two RS-485

units try to transmit at the same time, the error

condition is called bus contention.

Making RS-485 work. An RS-485 network is

like a group of people using walkie-talkies on a

single frequency. There are two major

limitations:

• When a unit is listening, it cannot talk;

when talking, it can’t listen.

• If two units talk at the same time, neither

will be heard correctly.

Stamp Applications no. 28, June 1997

2

LTC1487 Pinout

1 Receiver out
2 Receiver enable
3 Driver enable
4 Driver in
5 Ground
6 A
7 B
8 Vcc

120
1

+5V

LTC1487

0.1µF

1k

120

B A B A

T W I S T E D P A I R W I R I N G B

A

B

A

NODE NODE

NODE

LASTStamp

xm_rcv (pin 0)

10k

serIO (pin 1)

Figure 1. Networking demo setup.

Given those limitations, it’s vital to coordinate

units’ behavior. One of the simplest ways to do

this is to appoint one unit master and all other

units slaves. No slave unit is permitted to

transmit until told to do so by the master unit.

This solves the problem of preventing units from

transmitting at the same time. It does, however,

require the master to check in with all of the

slave units periodically for updates. If a slave

unit possesses urgent information, it must still

wait until called upon by the master before

transmitting.

An RS-485 demo. Figure 1 illustrates how I set

up a demonstration network using four BS1

controllers connected to LTC1487 RS-485

transceivers. I chose the LTC1487 because it

has some virtues beyond the normal RS-485

specs, including capability for up to 256 units on

a line, low electromagnetic interference (EMI)

from the signaling wires, and various sorts of

fool-proofing against static electricity, open

inputs and bus contention. It also draws far less

current than most comparable devices, just

120µA in receive mode.

Hardware. The LTC1487 has separate driver-

enable and receiver-enable pins. The driver is

enabled by a 1 on pin 3; the receiver by a 0 on

pin 2. To conserve Stamp pins, I tied these

together so that a 0 means send and a 1 means

receive.

Why doesn’t the 1487 have just a single

send/receive pin? It supports two other modes:

one in which both the driver and receiver are

enabled, allowing a controller to hear its own

serial output. The Stamp can’t send and receive

simultaneously, so this mode is no use to it.

In the other unused mode, both the driver and

receiver are disabled. This amounts to shutting

off the LTC1487, reducing its current draw to

1µA. However, the LTC1487’s current draw in

receive mode is only 120µA. Unless your

application uses battery power and software-

controlled shutdown, the pin saved by

combining the enable inputs is more valuable

than the possible savings in current draw.

The 10k resistor to ground prevents the

LTC1487 from accidentally getting into transmit

mode when the Stamp is disconnected or reset.

I also tied the receiver output and driver input

lines together. Stamps can send and receive

through the same pin, so there’s no reason to do

otherwise. The 1k resistor in series with the

receiver-output prevents damage in the event

that the receiver is enabled while the Stamp is

trying to transmit data. This would occur only in

the event of a bonehead program bug, but a

resistor is cheap insurance.

A Stamp plus the LTC1487 circuit make up

what I’m calling a node in the figure. Per the

LTC1487 specs, you can have up to 256 nodes

along a 2000-foot stretch of twisted-pair wire.

The manufacturer’s application diagram shows

the use of shielded cable, with the shield

connected to ground at one end. For shorter

runs of wire in electrically quiet surroundings,

Stamp Applications no. 28, June 1997

3

you may find that shielding is not strictly

necessary. You also may find that you can run

the full 4000-foot RS-485 cable length if you

comply with the 32-node limit. Networking is

very much a your-mileage-may-vary kind of

business.

Figure 1 shows the first and last nodes on the

wire with 120Ω terminating resistors across A

and B. These help prevent reflections and

ringing on the network. I’m going to duck the

difficult job of explaining the theory behind

that—it is enough to understand this: A

properly terminated RS-485 network preserves

the nice, crisp on/off waveforms of the serial

data. An unterminated or incorrectly terminated

network can distort the signals, sometimes to

the point of causing data errors.

No matter how many nodes are connected to

the net, only two of them—first and last—get

terminating resistors.

One of the LTC1487’s fool-proofing features

(controlled slew rate) makes it less fussy about

net termination than other RS-485 devices, but

do it right anyway.

As I said before, it is not necessary for the

nodes to share a common ground. For my demo,

I powered the nodes with individual batteries so

that they were floating relative to ground. If

you’re setting up a net in which nodes will be

connected to separate grounds, make sure to

check for differences in ground potential with an

AC voltmeter. If the difference is greater than

±7 volts, you have a problem; the net won’t

work. A discussion of building electrical wiring

and grounding practices is waaay beyond the

scope of this column (and beyond my experience

as a non-electrician). Suffice to say that you

must check and if necessary correct grounding

problems before you continue with your net.

Software. Listings 1 and 2 show how I

programmed my demo network. Listing 1 runs

the master; listing 2 runs on each of the slaves,

which are identified A, B, and C.

The master program puts the LTC1487 into

transmit mode and sends the ID of one of the

slaves, followed by a number for the slave unit

to write to its unused six output pins. The

master then waits for the slave to acknowledge

receipt of the data by sending back its ID.

Because of the way BS1 serial input

instructions work, this network is fragile. If a

slave unit is turned off, the master will get stuck

waiting for acknowledgment. There are two

remedies: use a BS2 master and set a serial

timeout (listing 3), or dedicate an additional

Stamp to the job of monitoring the network and

resetting the master or providing a substitute

response.

Note that the listings send data to the slaves

in numeric text format (by preceding values

with #), rather than as single bytes. If data were

sent as bytes, it could accidentally match a

different slave’s ID, causing that slave to expect

further data. By limiting slave IDs to letters and

data to numbers, we prevent such conflicts. If

you’re not clear on how numbers are

represented as text, you might review Stamp
Applications no. 16, available through the N&V
web site, www.nutsvolts.com.

One more subtlety—the Serout instruction

that talks to a particular slave unit appends a

period “.” after the numeric data. This has no

significance other than to cause the receiving

program to recognize that it has received a

complete, valid number. I could have used any

non-numeric character, but the period seemed

appropriate

The slave program in listing 2 is just the

opposite of the master program. A slave waits to

receive its ID, then grabs the number that

follows and writes it to pins 2 through 7. It then

enables its transmitter and sends its ID back to

the master as an acknowledgment.

Listing 3 is a BS2 master-unit program. It

operates in exactly the way as the BS1 version,

but uses the BS2’s serial timeout capability to

recover from cases in which the slaves fail to

respond.

Refinements. I have only scratched the surface

of RS-485 networking, a pretty complicated

subject. If you decide to put some of the

principles shown here into action, be prepared

for some challenges. For example, if you make

changes to the protocol, the rules governing the

way the master and slaves communicate, you

will be fighting a debugging war on two fronts.

If the net doesn’t work, is the bug in the master

Stamp Applications no. 28, June 1997

4

code, the slave code, or both? What if the code is

fine, but you reset the master before the slaves

so that the slaves missed the message that

would have started the net? Or what about a

loose or incorrect connection? Or... You get the

idea.

One obvious refinement might be to include a

PC in your developing network. RS-232 to RS-

485 adapters are available from better computer

and electronics suppliers like Jameco (sources).

But you should be comfortable with serial-port

programming before you add this new

complication to your life.

Sources

The LTC1487 is available from Digi-Key, 701

Brooks Avenue South, PO Box 677, Thief River

Falls, MN 56701-0677; phone 1-800-344-4539,

fax 218-681-3380, net http://www.digikey.com.

Listing 1. BS1 RS-485 Master
' Program: MASTR485.BAS (RS-485 net master)
' This program demonstrates some basic principles of using an RS-485
' transceiver chip (LTC1487 used in our setup). The program sends
' a byte to each of three 'slave' units, which write that bit
' pattern to their 6 output pins not used for RS-485 communication
' and control. To confirm receipt of the message, slaves reply with
' their node id, in this case "A", "B", or "C".

SYMBOL id = b11 ' ID number of net node.
SYMBOL reply = b10 ' Response from node.
SYMBOL pinSet = b9 ' Pin setting for node.
SYMBOL xm_rcv = 0 ' Pin 0 sets transmit (1) or receive (0).
SYMBOL serIO = 1 ' Pin 1 is used for serial input/output.

' For the purpose of the demo, the pinSet value that the master will
' tell the slaves to write to their outputs will be an easy-to-
' recognize sequence: 000001 000010 000100 001000 010000 100000 000001...
' You can connect LEDs to the slaves' pins 2-7 to watch the sequence,
' or take my word for it. Since the lowest two bits are reserved for
' use by the RS-485 transceiver, the starting pattern is 00000100.
begin:
 pinSet = %00000100 ' Starting bit pattern.
again:
 pause 1000 ' Run slowly for demo purposes.
 for id = "A" to "C" ' Cycle through ids A, B, C.
 high xm_rcv: pause 1 ' Turn on 485 transmitter; wait briefly.
 serout serIO,T2400,(id,#pinSet,".") 'Send id, bit pattern, and ".".

NOTE: This article was originally
published in 1997. The Stamp
Applications column continues with a
changing roster of writers. See
www.nutsvolts.com or
www.parallaxinc.com for current
Stamp-oriented information.

Stamp Applications no. 28, June 1997

5

' MASTR485.BAS continued

 low xm_rcv ' Switch to receive mode.
 serin serIO,t2400,reply ' Receive the slave's response.
 debug "Unit ", #@reply," OK.",cr ' Display on debug screen.
 next ' Next unit.
 debug cr,cr ' Scroll the screen.
 pinSet = pinSet * 2 ' Shift bit pattern left.
 if pinSet = 0 then begin ' If bitpattern is 0, reload %00000100.
goto again ' Else continue.

Listing 2. BS1 RS-485 Slave
' Program: SLAVE485.BAS (RS-485 net slave)
' This program demonstrates some basic principles of using an RS-485
' transceiver chip (LTC1487 in our setup). The program waits for
' an ID letter matching the value myID set below. When that letter
' is received, the data that follows--a number in text format like
' "192"--is saved to the byte variable and then written to the upper
' six output pins. The program acknowledges receipt of the data
' by sending its ID back to the master.
' >>The master program is set up to expect three slaves with ids "A",
' "B" and "C". Use this program for all slaves, but change the symbol
' myId below to "B" and "C" for the other slave units.

SYMBOL myId = "A" ' ID letter of this node.
SYMBOL pinSet = b10 ' Pin setting for node.
SYMBOL xm_rcv = 0 ' Pin 0 sets transmit (1) or receive (0).
SYMBOL serIO = 1 ' Pin 1 is used for serial input/output.

again:
 dirs = %11111100 ' Set upper 6 pins to output.
 low xm_rcv ' Set 485 transceiver to receive mode.
 serin serIO,t2400,(myId),#pinSet ' Wait for id, then receive number.
 pinSet = pinSet & %11111100 ' Strip off two lowest bits of number.
 let pins = pinSet ' Write that value to outputs.
 high xm_rcv: pause 10 ' Set 485 transceiver for transmit.
 serout serIO,T2400,(myID) ' Send back my ID letter.
goto again ' Do it all over.

Stamp Applications no. 28, June 1997

6

Listing 3. BS2 RS-485 Master
' Program: MASTR485.BS2 (RS-485 net master for BS2)
' This program demonstrates some basic principles of using an RS-485
' transceiver chip (LTC1487 used in our setup). The program sends
' a byte to each of three 'slave' units, which write that bit
' pattern to their 6 output pins not used for RS-485 communication
' and control. To confirm receipt of the message, slaves reply with
' their node id, in this case "A", "B", or "C". If a slave does not
' respond within 100 milliseconds, this BS2 version of the master
' program displays an error message and carries on.

id var byte ' ID number of net node.
reply var byte ' Response from node.
pinSet var byte ' Pin setting for node.
xm_rcv con 0 ' Pin 0 sets transmit (1) or receive (0).
serIO con 1 ' Pin 1 is used for serial input/output.
T2400 con 396 ' Noninverted 2400-baud serial baudmode.

' For the purpose of the demo, the pinSet value that the master will
' tell the slaves to write to their outputs will be an easy-to-
' recognize sequence: 000001 000010 000100 001000 010000 100000 000001...
' You can connect LEDs to the slaves' pins 2-7 to watch the sequence,
' or take my word for it. Since the lowest two bits are reserved for
' use by the RS-485 transceiver, the starting pattern is 00000100.
begin:
 pinSet = %00000100 ' Starting bit pattern.
again:
 pause 1000 ' Run slowly for demo purposes.
 for id = "A" to "C" ' Cycle through ids A, B, C.
 high xm_rcv: pause 1 ' Turn on 485 transmitter; wait briefly.
 serout serIO,T2400,[id,DEC pinSet,"."] 'Id, bit pattern, and ".".
 low xm_rcv ' Switch to receive mode.
 serin serIO,T2400,100,netErr,[reply] ' Get response.
 debug "Unit ", reply," OK.",cr ' Display on debug screen.
errReturn:
 next ' Next unit.
 debug cr,cr ' Scroll the screen.
 pinSet = pinSet * 2 ' Shift bit pattern left.
 if pinSet = 0 then begin ' If bitpattern is 0, reload %00000100.
goto again ' Else continue.

' If a slave unit does not repond within 100ms, the program comes here
' to display an error message on the screen, then continues with the
' next unit.
netErr:
 debug "Unit ", id,": NO RESPONSE.",cr ' Display on debug screen.
 goto errReturn

